High-throughput studies to determine differential immune (humoral) response to diseases are becoming of increasing interest because the information they provide can help in early diagnosis as well as monitoring of therapeutics. Protein microarrays are a high-throughput and convenient technology that can be applied to the study of the humoral response. Proteins can be arrayed on slides and then probed with serum from different classes of patients to observe differences that may exist among autoantibodies that reflect differences in disease states. However, such studies may be difficult to interpret due to the weak overall signal response of such protein microarrays. We propose that this weak signal response is due to the physical positioning of the disease proteins that renders them sterically hindered from binding partners in the serum. In this study, we hypothesize that reducing the complexity and size of the disease proteins by chemical digestion using cyanogen bromide (CNBr) may enhance the overall signal from the humoral response and facilitate visualization of disease-specific responses in various classes of serum. A modified protein microarray methodology using CNBr digestion is presented here. The new workflow was applied to a set of 10 serum samples from healthy subjects, 10 from patients with chronic pancreatitis and 10 from patients diagnosed with pancreatic cancer and the results were compared to results obtained in the absence of CNBr digestion. CNBr digestion allowed the identification of 10 additional autoantibodies that responded to serum, 5 of which were unique to pancreatitis and cancer sera. This new methodology may increase the sensitivity of microarray studies measuring autoantibodies in serum.
Enhanced detection of autoantibodies on protein microarrays using a modified protein digestion technique.
阅读:3
作者:Patwa Tasneem H, Wang Yanfei, Simeone Diane M, Lubman David M
| 期刊: | Journal of Proteome Research | 影响因子: | 3.600 |
| 时间: | 2008 | 起止号: | 2008 Jun;7(6):2553-61 |
| doi: | 10.1021/pr800023g | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
