Prototyping optimization-based image reconstructions from limited-angular-range data in dual-energy CT.

阅读:5
作者:Chen Buxin, Zhang Zheng, Xia Dan, Sidky Emil Y, Pan Xiaochuan
Image reconstruction from data collected over full-angular range (FAR) in dual-energy CT (DECT) is well-studied. There exists interest in DECT with advanced scan configurations in which data are collected only over limited-angular ranges (LARs) for meeting unique workflow needs in certain practical imaging applications, and thus in the algorithm development for image reconstruction from such LAR data. The objective of the work is to investigate and prototype image reconstructions in DECT with LAR scans. We investigate and prototype optimization programs with various designs of constraints on the directional-total-variations (DTVs) of virtual monochromatic images and/or basis images, and derive the DTV algorithms to numerically solve the optimization programs for achieving accurate image reconstruction from data collected in a slew of different LAR scans. Using simulated and real data acquired with low- and high-kV spectra over LARs, we conduct quantitative studies to demonstrate and evaluate the optimization programs and their DTV algorithms developed. As the results of the numerical studies reveal, while the DTV algorithms yield images of visual quality and quantitative accuracy comparable to that of the existing algorithms from FAR data, the former reconstruct images with improved visualization, reduced artifacts, and also enhanced quantitative accuracy when applied to LAR data in DECT. Optimization-based, one-step algorithms, including the DTV algorithms demonstrated, can be developed for quantitative image reconstruction from spectral data collected over LARs of extents that are considerably smaller than the FAR in DECT. The theoretical and numerical results obtained can be exploited for prototyping designs of optimization-based reconstructions and LAR scans in DECT, and they may also yield insights into the development of reconstruction procedures in practical DECT applications. The approach and algorithms developed can naturally be applied to investigating image reconstruction from LAR data in multi-spectral and photon-counting CT.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。