Drug repurposing presents a promising strategy to accelerate drug discovery by identifying new therapeutic uses for existing compounds, particularly for diseases with limited or no effective treatment options. We introduce DrugPipe, a 'Generative AI-Assisted Virtual Screening Pipeline' developed within the target-centric paradigm of drug repurposing, which aims to discover new indications by identifying compounds that interact with a specific protein target. 'DrugPipe' integrates generative modeling, binding pocket prediction, and similarity-based retrieval from drug databases to enable a scalable and generalizable in silico repurposing workflow. It supports blind virtual screening for any protein target without requiring prior structural or functional annotations, making it especially suited for novel or understudied targets and emerging health threats. By efficiently generating candidate ligands and rapidly retrieving structurally similar approved drugs, 'DrugPipe' accelerates the identification and prioritization of repurposable compounds. In comparative evaluations, it achieves hit rate performance comparable to QVina-W, a widely used blind docking tool, while significantly reducing computational time, highlighting its practical value for large-scale virtual screening and data-scarce repurposing scenarios. The full implementation and evaluation details are available at https://github.com/HySonLab/DrugPipe.
DrugPipe: Generative artificial intelligence-assisted virtual screening pipeline for generalizable and efficient drug repurposing.
阅读:11
作者:Pham Phuc, Nguyen Viet Thanh Duy, Cho Kyu Hong, Hy Truong-Son
| 期刊: | Biology Methods & Protocols | 影响因子: | 2.500 |
| 时间: | 2025 | 起止号: | 2025 May 30; 10(1):bpaf038 |
| doi: | 10.1093/biomethods/bpaf038 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
