Advances in digital whole-slide imaging and machine learning (ML) provide new opportunities for automated examination and quantification of histopathological slides to support pathologists and biologists. However, implementation of ML tools often requires advanced skills in computer science that may not be immediately available in the traditional wet-lab environment. Here, we propose a simple and accessible workflow to automate detection and quantification of brain epithelial metastases on digitized histological slides. We leverage 100 Hematoxylin & Eosin (H&E)-stained whole slide images (WSIs) from 25 Balb/c mice with various level of brain metastatic tumor burden. A supervised training of the Trainable Weka Segmentation (TWS) from Fiji was achieved from annotated WSIs. Upon comparison with manually drawn regions, it is apparent that the algorithm learned to identify and segment cancer cell-specific nuclei and normal brain tissue. Our approach resulted in a robust and highly concordant correlation between automated metastases quantification of brain metastases and manual human assessment (R(2)â=â0.8783; Pâ<â0.0001). This simple approach is amenable to other similar analyses, including that of human tissues. Widespread adoption of these tools aims to democratize ML and improve precision in traditionally qualitative tasks in histopathology-based research.
Automated detection and quantification of breast cancer brain metastases in an animal model using democratized machine learning tools.
阅读:6
作者:Sikpa Dina, Fouquet Jérémie P, Lebel Réjean, Diamandis Phedias, Richer Maxime, Lepage Martin
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2019 | 起止号: | 2019 Nov 22; 9(1):17333 |
| doi: | 10.1038/s41598-019-53911-x | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
