Synthetic Soil Aggregates: Bioprinted Habitats for High-Throughput Microbial Metaphenomics

合成土壤团聚体:用于高通量微生物元表型组学的生物打印栖息地

阅读:1
作者:Darian Smercina ,Neerja Zambare ,Kirsten Hofmockel ,Natalie Sadler ,Erin L Bredeweg ,Carrie Nicora ,Lye Meng Markillie ,Jayde Aufrecht

Abstract

The dynamics of microbial processes are difficult to study in natural soil, owing to the small spatial scales on which microorganisms operate and to the opacity and chemical complexity of the soil habitat. To circumvent these challenges, we have created a 3D-bioprinted habitat that mimics aspects of natural soil aggregates while providing a chemically defined and translucent alternative culturing method for soil microorganisms. Our Synthetic Soil Aggregates (SSAs) retain the porosity, permeability, and patchy resource distribution of natural soil aggregates-parameters that are expected to influence emergent microbial community interactions. We demonstrate the printability and viability of several different microorganisms within SSAs and show how the SSAs can be integrated into a multi-omics workflow for single SSA resolution genomics, metabolomics, proteomics, lipidomics, and biogeochemical assays. We study the impact of the structured habitat on the distribution of a model co-culture microbial community and find that it is significantly different from the spatial organization of the same community in liquid culture, indicating a potential for SSAs to reproduce naturally occurring emergent community phenotypes. The SSAs have the potential as a tool to help researchers quantify microbial scale processes in situ and achieve high-resolution data from the interplay between environmental properties and microbial ecology. Keywords: bacteria; biogeochemistry; bioprinting; fungi; metaphenome; microbiome; multi-omics; soil; soil aggregates; synthetic habitat.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。