BACKGROUND: The isolation and proteomics characterization of extracellular vesicles (EVs) from body fluids is challenging due to their vast heterogeneity. We have recently demonstrated that Fluorescence-activated Cell Sorting (FACS) efficiently isolates the whole EV circulating compartment directly from untouched body fluids enabling a comprehensive EV proteomics analysis. RESULTS: Here, we characterized, for the first time, a single-phenotype EV subset by sorting leukocyte-derived EVs (Leuko EVs) from peripheral blood and tears of healthy volunteers. Using an optimized and patented staining protocol of the whole EV compartment we identified and excluded non-EV particles, debris and damaged EVs. We further isolated, using an anti-CD45 antibody, Leuko EVs (CD45+âEVs), reaching a high level of purity (>â90%). Purified Leuko EVs were characterized using atomic force microscopy, nanoparticle tracking, and shotgun proteomics analysis revealing a similar coded protein cargo in both biological fluids. Subsequently, the same workflow was applied to tears from Relapsing-Remitting Multiple Sclerosis (RRMS) patients, revealing a Leuko EVs protein cargo enrichment that reflects the neuroinflammatory condition characteristics of RRMS. This enrichment was evidenced by the activation of upstream regulators TGFB1 and NFE2L2, which are associated with inflammatory responses. Additionally, the analysis identified markers indicative of endothelial cell proliferation and the development of enhanced vascular networks, with AGNPT2 and VEGF emerging as activated upstream regulators. These findings indicate the complex interplay between inflammation and angiogenesis in RRMS. CONCLUSIONS: In conclusion, our combined FACS-Proteomics strategy offers a promising approach for biomarker discovery, analysing cell-specific EV phenotypes directly from untouched body fluids, advancing the clinical value of tears EVs and improving the understanding of EV-mediated processes in vivo. Data are available via ProteomeXchange with the identifier PXD049036 and in EV-TRACK knowledgebase with ID: EV240150.
FACS-Proteomics strategy toward extracellular vesicles single-phenotype characterization in biological fluids: exploring the role of leukocyte-derived EVs in multiple sclerosis.
阅读:5
作者:Cufaro Maria Concetta, Lanuti Paola, De Bellis Domenico, Veschi Serena, Piro Anna, Fontana Antonella, Di Sebastiano Alice, Brocco Davide, Simeone Pasquale, Pilato Serena, Khorooshi Reza M H, Tomassini Valentina, Rispoli Marianna Gabriella, Federici Luca, Cicalini Ilaria, Pieragostino Damiana, Del Boccio Piero
| 期刊: | Journal of Translational Medicine | 影响因子: | 7.500 |
| 时间: | 2025 | 起止号: | 2025 May 20; 23(1):565 |
| doi: | 10.1186/s12967-025-06558-4 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
