Texture analysis of routine T2 weighted fat-saturated images can identify head and neck paragangliomas - A pilot study.

阅读:9
作者:Ghosh Adarsh, Malla Soumya Ranjan, Bhalla Ashu Seith, Manchanda Smita, Kandasamy Devasenathipathy, Kumar Rakesh
PURPOSE: To evaluate the role of the first and second-order texture parameters obtained from T2-weighted fat-saturated DIXON images in differentiating paragangliomas from other neck masses, and to develop a statistical model to classify them. METHOD: We retrospectively evaluated 38 paragangliomas, 18 nerve-sheath tumours and 14 other miscellaneous neck lesions obtained from an IRB approved study conducted between January 2016 and June 2019; using a composite gold standard of histopathology, cytology and DOTANOC PET CT (A total of 70 lesions in 63 patients). Fat-suppressed T2weighted-DIXON axial images were used. First and second-order texture-parameters were calculated from the original and filtered images. Feature selection using F-statistics and collinearity analysis provided 14 texture parameters for further analysis. Mann-Whitney-U test was used to compare between the groups and p-values were adjusted for multiple comparisons. ROC curve analysis was used to obtain optimal cut-offs. RESULTS: A total of ten texture features were found to be significantly different between paragangliomas and non-paraganglioma lesions. Minimum from the histogram of grey levels was lower in paragangliomas with a cut off of ≤113.462 obtaining 62.9 % sensitivity and 77.27 % specificity in differentiating paragangliomas from non-paragangliomas. Logistic regression model was trained (n-49) using forward feature selection, which when evaluated on the validation set(n-21)- obtained an AUC of 0.855(95 %CI, 0.633 to 0.968) with a positive likelihood ratio of 4.545 (95 %CI, 1.298-15.923) in differentiating paragangliomas from non-paragangliomas. CONCLUSION: Texture analysis of a routine imaging sequence can identify paragangliomas with high accuracy. Further development of texture analysis would enable better imaging workflow, resource utilisation and imaging cost reductions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。