Exploring the infiltrative and degradative ability of Fusarium oxysporum on polyethylene terephthalate (PET) using correlative microscopy and deep learning.

阅读:4
作者:Cognigni Flavio, Temporiti Marta Elisabetta Eleonora, Nicola Lidia, Gueninchault Nicolas, Tosi Solveig, Rossi Marco
Managing the worldwide steady increase in the production of plastic while mitigating the Earth's global pollution is one of the greatest challenges nowadays. Fungi are often involved in biodegradation processes thanks to their ability to penetrate into substrates and release powerful catabolic exoenzymes. However, studying the interaction between fungi and plastic substrates is challenging due to the deep hyphal penetration, which hinders visualisation and evaluation of fungal activity. In this study, a multiscale and multimodal correlative microscopy workflow was employed to investigate the infiltrative and degradative ability of Fusarium oxysporum fungal strain on polyethylene terephthalate (PET) fragments. The use of non-destructive high-resolution 3D X-ray microscopy (XRM) coupled with a state-of-art Deep Learning (DL) reconstruction algorithm allowed optimal visualisation of the distribution of the fungus on the PET fragment. The fungus preferentially developed on the edges and corners of the fragment, where it was able to penetrate into the material through fractures. Additional analyses with scanning electron microscopy (SEM), Raman and energy dispersive X-ray spectroscopy (EDX) allowed the identification of the different phases detected by XRM. The correlative microscopy approach unlocked a more comprehensive understanding of the fungus-plastic interaction, including elemental information and polymeric composition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。