Because contemporary intraoperative tumor detection modalities, such as intraoperative MRI, are not ubiquitously available and can disrupt surgical workflow, there is an imperative for an accessible diagnostic device that can meet the surgeon's needs in identifying tissue types. The objective of this paper is to determine the efficacy of a novel non-contact tumor detection device for metastatic melanoma boundary identification in a tissue-mimicking phantom, evaluate the identification of metastatic melanoma boundaries in ex vivo mouse brain tissue, and find the error associated with identifying this boundary. To validate the spatial and fluorescence resolution of the device, tissue-mimicking phantoms were created with modifiable optical properties. Phantom tissue provided ground truth measurements for fluorophore concentration differences with respect to spatial dimensions. Modeling metastatic disease, ex vivo melanoma brain metastases were evaluated to detect differences in fluorescence between healthy and neoplastic tissue. This analysis includes determining required-to-observe fluorescence differences in tissue. H&E staining confirmed tumor presence in mouse tissue samples. The device detected a difference in normalized average fluorescence intensity in all three phantoms. There were differences in fluorescence with the presence and absence of melanin. The estimated tumor boundary of all tissue phantoms was within 0.30 mm of the ground truth tumor boundary for all boundaries. Likewise, when applied to the melanoma-bearing brains from ex vivo mice, a difference in normalized fluorescence intensity was successfully detected. The potential prediction window for the tumor boundary location is less than 1.5 mm for all ex vivo mouse brain tumors boundaries. We present a non-contact, laser-induced fluorescence device that can identify tumor boundaries based on changes in laser-induced fluorescence emission intensity. The device can identify phantom ground truth tumor boundaries within 0.30 mm using instantaneous rate of change of normalized fluorescence emission intensity and can detect endogenous fluorescence differences in melanoma brain metastases in ex vivo mouse tissue.
Creation of Non-Contact Device for Use in Metastatic Melanoma Margin Identification in ex vivo Mouse Brain.
阅读:4
作者:Tucker Matthew, Lacayo Matthew, Joseph Suzanna, Ross Weston, Chongsathidkiet Pakawat, Fecci Peter, Codd Patrick J
| 期刊: | Proc SPIE Int Soc Opt Eng | 影响因子: | 0.000 |
| 时间: | 2022 | 起止号: | 2022 Jan-Feb |
| doi: | 10.1117/12.2608975 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
