Modeling in systems and synthetic biology relies on accurate parameter estimates and predictions. Accurate model calibration relies, in turn, on data and on how well suited the available data are to a particular modeling task. Optimal experimental design (OED) techniques can be used to identify experiments and data collection procedures that will most efficiently contribute to a given modeling objective. However, implementation of OED is limited by currently available software tools that are not well suited for the diversity of nonlinear models and non-normal data commonly encountered in biological research. Moreover, existing OED tools do not make use of the state-of-the-art numerical tools, resulting in inefficient computation. Here, we present the NLoed software package and demonstrate its use with in vivo data from an optogenetic system in Escherichia coli. NLoed is an open-source Python library providing convenient access to OED methods, with particular emphasis on experimental design for systems biology research. NLoed supports a wide variety of nonlinear, multi-input/output, and dynamic models and facilitates modeling and design of experiments over a wide variety of data types. To support OED investigations, the NLoed package implements maximum likelihood fitting and diagnostic tools, providing a comprehensive modeling workflow. NLoed offers an accessible, modular, and flexible OED tool set suited to the wide variety of experimental scenarios encountered in systems biology research. We demonstrate NLoed's capabilities by applying it to experimental design for characterization of a bacterial optogenetic system.
NLoed: A Python Package for Nonlinear Optimal Experimental Design in Systems Biology.
阅读:4
作者:Braniff Nathan, Pearce Taylor, Lu Zixuan, Astwood Michael, Forrest William S R, Receno Cody, Ingalls Brian
| 期刊: | ACS Synthetic Biology | 影响因子: | 3.900 |
| 时间: | 2022 | 起止号: | 2022 Dec 16; 11(12):3921-3928 |
| doi: | 10.1021/acssynbio.2c00131 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
