Purification of archetypal soybean root suberin mostly comprising alka(e)noic acids using an ionic liquid catalyst.

阅读:11
作者:Escórcio Rita, Sandhu Armaan K, Bento Artur, Tomé Ana S, Moreira Carlos J S, Brözel Volker S, Silva Pereira Cristina
Soybean (Glycine max) is an increasingly relevant crop due to its economic importance and also a model plant for the study of root symbiotic associations with nodule forming rhizobia. Plant polyesters mediate plant-microbe interactions with both pathogenic and beneficial microbes; suberin has been hypothesized to play a key role during the early steps of rhizobia attachment to the root. The downside is that suberin chemistry in soybean root is still scarcely studied. This study addresses this outstanding question by reporting a straightforward workflow for a speedy purification of suberin from soybean root and for its subsequent detailed chemical analysis. To purify suberin, cholinium hexanoate (an ionic liquid) was used as the catalyst. The ensuing suberin is highly esterified as observed by a precise Nuclear Magnetic Resonance quantification of each ester type, discriminating between primary and acylglycerol esters. Moreover, the composing hydrolysable monomers detected through GC-MS revealed that hexadecanoic acid is the most abundant monomer, similar to that reported before by others. Overall, this study highlights the adequacy of the ionic liquid catalyst for the isolation of suberin from soybean roots, where the polymer natural abundance is low, and builds new knowledge on the specificities of its chemistry; essential to better understand the biological roles of suberin in roots.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。