Fabrication and Modelling of a Reservoir-Based Drug Delivery System for Customizable Release.

阅读:17
作者:Hauck Margarethe, Dittmann Jan, Zeller-Plumhoff Berit, Madurawala Roshani, Hellmold Dana, Kubelt Carolin, Synowitz Michael, Held-Feindt Janka, Adelung Rainer, Wulfinghoff Stephan, Schütt Fabian
Localized therapy approaches have emerged as an alternative drug administration route to overcome the limitations of systemic therapies, such as the crossing of the blood-brain barrier in the case of brain tumor treatment. For this, implantable drug delivery systems (DDS) have been developed and extensively researched. However, to achieve an effective localized treatment, the release kinetics of DDS needs to be controlled in a defined manner, so that the concentration at the tumor site is within the therapeutic window. Thus, a DDS, with patient-specific release kinetics, is crucial for the improvement of therapy. Here, we present a computationally supported reservoir-based DDS (rDDS) development towards patient-specific release kinetics. The rDDS consists of a reservoir surrounded by a polydimethylsiloxane (PDMS) microchannel membrane. By tailoring the rDDS, in terms of membrane porosity, geometry, and drug concentration, the release profiles can be precisely adapted, with respect to the maximum concentration, release rate, and release time. The release is investigated using a model dye for varying parameters, leading to different distinct release profiles, with a maximum release of up to 60 days. Finally, a computational simulation, considering exemplary in vivo conditions (e.g., exchange of cerebrospinal fluid), is used to study the resulting drug release profiles, demonstrating the customizability of the system. The establishment of a computationally supported workflow, for development towards a patient-specific rDDS, in combination with the transfer to suitable drugs, could significantly improve the efficacy of localized therapy approaches.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。