BACKGROUND: Although aggregate data (AD) from randomised clinical trials (RCTs) are used in the majority of network meta-analyses (NMAs), other study designs (e.g., cohort studies and other non-randomised studies, NRS) can be informative about relative treatment effects. The individual participant data (IPD) of the study, when available, are preferred to AD for adjusting for important participant characteristics and to better handle heterogeneity and inconsistency in the network. RESULTS: We developed the R package crossnma to perform cross-format (IPD and AD) and cross-design (RCT and NRS) NMA and network meta-regression (NMR). The models are implemented as Bayesian three-level hierarchical models using Just Another Gibbs Sampler (JAGS) software within the R environment. The R package crossnma includes functions to automatically create the JAGS model, reformat the data (based on user input), assess convergence and summarize the results. We demonstrate the workflow within crossnma by using a network of six trials comparing four treatments. CONCLUSIONS: The R package crossnma enables the user to perform NMA and NMR with different data types in a Bayesian framework and facilitates the inclusion of all types of evidence recognising differences in risk of bias.
crossnma: An R package to synthesize cross-design evidence and cross-format data using network meta-analysis and network meta-regression.
阅读:5
作者:Hamza Tasnim, Schwarzer Guido, Salanti Georgia
| 期刊: | BMC Medical Research Methodology | 影响因子: | 3.400 |
| 时间: | 2024 | 起止号: | 2024 Aug 5; 24(1):169 |
| doi: | 10.1186/s12874-023-02130-0 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
