BACKGROUND: The structural characteristics of whole sorghum kernels are known to affect end-use quality, but traditional evaluation of this structure is two-dimensional (i.e., cross section of a kernel). Current technology offers the potential to consider three-dimensional structural characteristics of grain. X-ray computed tomography (CT) presents one such opportunity to nondestructively extract quantitative data from grain caryopses which can then be related to end-use quality. RESULTS: Phenotypic measurements were extracted from CT scans of grain sorghum caryopses. Extensive phenotypic variation was found for embryo volume, endosperm hardness, endosperm texture, endosperm volume, pericarp volume, and kernel volume. CT derived estimates were strongly correlated with ground truth measurements enabling the identification of genotypes with superior structural characteristics. CONCLUSIONS: Presented herein is a phenotyping pipeline developed to quantify three-dimensional structural characteristics from grain sorghum caryopses which increases the throughput efficiency of previously difficult to measure traits. Adaptation of this workflow to other small-seeded crops is possible providing new and unique opportunities for scientists to study grain in a nondestructive manner which will ultimately lead to improvements end-use quality.
Application of X-ray computed tomography to analyze the structure of sorghum grain.
阅读:6
作者:Crozier Daniel, Riera-Lizarazu Oscar, Rooney William L
| 期刊: | Plant Methods | 影响因子: | 4.400 |
| 时间: | 2022 | 起止号: | 2022 Jan 11; 18(1):3 |
| doi: | 10.1186/s13007-022-00837-7 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
