Relative Quantification of Lipid Isomers in Imaging Mass Spectrometry Using Gas-Phase Charge Inversion Ion/Ion Reactions and Infrared Multiphoton Dissociation.

阅读:5
作者:Bonney Julia R, Kang Woo-Young, Specker Jonathan T, Liang Zhongling, Scoggins Troy R 4th, Prentice Boone M
Accurate structural identification of lipids in imaging mass spectrometry is critical to properly contextualizing spatial distributions with tissue biochemistry. Gas-phase charge inversion ion/ion reactions alter the ion type prior to dissociation to allow for more structurally informative fragmentation and improve lipid identification at the isomeric level. In this work, infrared multiphoton dissociation (IRMPD) was interfaced with a commercial hybrid Qh-FT-ICR mass spectrometer to enable the rapid fragmentation of gas-phase charge inversion ion/ion reaction products at every pixel in imaging mass spectrometry experiments. An ion/ion reaction between phosphatidylcholine (PC) monocations generated from rat brain tissue via matrix-assisted laser desorption/ionization (MALDI) and 1,4-phenylenediproprionic acid reagent dianions generated via electrospray ionization (ESI) followed by IRMPD of the resulting product ion complex produces selective fatty acyl chain cleavages indicative of fatty acyl carbon compositions in the lipid. Ion/ion reaction images using this workflow allow for mapping of the relative spatial distribution of multiple PC isomers under a single sum composition lipid identification. Lipid isomers display significantly different relative spatial distributions within rat brain tissue, highlighting the importance of resolving isomers in imaging mass spectrometry experiments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。