Impact of upfront cellular enrichment by laser capture microdissection on protein and phosphoprotein drug target signaling activation measurements in human lung cancer: Implications for personalized medicine.

阅读:4
作者:Baldelli Elisa, Haura Eric B, Crinò Lucio, Cress Douglas W, Ludovini Vienna, Schabath Matthew B, Liotta Lance A, Petricoin Emanuel F, Pierobon Mariaelena
PURPOSE: The aim of this study was to evaluate whether upfront cellular enrichment via laser capture microdissection (LCM) is necessary for accurately quantifying predictive biomarkers in nonsmall cell lung cancer tumors. EXPERIMENTAL DESIGN: Fifteen snap frozen surgical biopsies were analyzed. Whole tissue lysate and matched highly enriched tumor epithelium via LCM were obtained for each patient. The expression and activation/phosphorylation levels of 26 proteins were measured by reverse phase protein microarray. Differences in signaling architecture of dissected and undissected matched pairs were visualized using unsupervised clustering analysis, bar graphs, and scatter plots. RESULTS: Overall patient matched LCM and undissected material displayed very distinct and differing signaling architectures with 93% of the matched pairs clustering separately. These differences were seen regardless of the amount of starting tumor epithelial content present in the specimen. CONCLUSIONS AND CLINICAL RELEVANCE: These results indicate that LCM driven upfront cellular enrichment is necessary to accurately determine the expression/activation levels of predictive protein signaling markers although results should be evaluated in larger clinical settings. Upfront cellular enrichment of the target cell appears to be an important part of the workflow needed for the accurate quantification of predictive protein signaling biomarkers. Larger independent studies are warranted.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。