Computationally designed transmembrane α-helical peptides (CHAMP) have been used to compete for helix-helix interactions within the membrane, enabling the ability to probe the activation of the integrins αIIbβ3 and αvβ3. Here, this method is extended towards the design of CHAMP peptides that inhibit the association of the α5β1 transmembrane (TM) domains, targeting the Ala-X3-Gly motif within α5. Our previous design algorithm was performed alongside a new workflow implemented within the widely used Rosetta molecular modeling suite. Peptides from each computational approach activated integrin α5β1 but not αVβ3 in human endothelial cells. Two CHAMP peptides were shown to directly associate with an α5 TM domain peptide in detergent micelles to a similar degree as a β1 TM peptide does. By solution-state nuclear magnetic resonance, one of these CHAMP peptides was shown to bind primarily the integrin β1 TM domain, which itself has a Gly-X3-Gly motif. The second peptide associated modestly with both α5 and β1 constructs, with slight preference for α5. Although the design goal was not fully realized, this work characterizes novel CHAMP peptides activating α5β1 that can serve as useful reagents for probing integrin biology.
De novo designed transmembrane peptides activating the α5β1 integrin.
阅读:3
作者:Mravic Marco, Hu Hailin, Lu Zhenwei, Bennett Joel S, Sanders Charles R, Orr A Wayne, DeGrado William F
| 期刊: | Protein Engineering Design & Selection | 影响因子: | 3.400 |
| 时间: | 2018 | 起止号: | 2018 May 1; 31(5):181-190 |
| doi: | 10.1093/protein/gzy014 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
