Deep learning based automatic internal gross target volume delineation from 4D-CT of hepatocellular carcinoma patients.

阅读:6
作者:Yang Zhen, Yang Xiaoyu, Cao Ying, Shao Qigang, Tang Du, Peng Zhao, Di Shuanhu, Zhao Yuqian, Li Shuzhou
BACKGROUND: The location and morphology of the liver are significantly affected by respiratory motion. Therefore, delineating the gross target volume (GTV) based on 4D medical images is more accurate than regular 3D-CT with contrast. However, the 4D method is also more time-consuming and laborious. This study proposes a deep learning (DL) framework based on 4D-CT that can achieve automatic delineation of internal GTV. METHODS: The proposed network consists of two encoding paths, one for feature extraction of adjacent slices (spatial slices) in a specific 3D-CT sequence, and one for feature extraction of slices at the same location in three adjacent phase 3D-CT sequences (temporal slices), a feature fusion module based on an attention mechanism was proposed for fusing the temporal and spatial features. Twenty-six patients' 4D-CT, each consisting of 10 respiratory phases, were used as the dataset. The Hausdorff distance (HD95), Dice similarity coefficient (DSC), and volume difference (VD) between the manual and predicted tumor contour were computed to evaluate the model's segmentation accuracy. RESULTS: The predicted GTVs and IGTVs were compared quantitatively and visually with the ground truth. For the test dataset, the proposed method achieved a mean DSC of 0.869 ± 0.089 and an HD95 of 5.14 ± 3.34 mm for all GTVs, with under-segmented GTVs on some CT slices being compensated by GTVs on other slices, resulting in better agreement between the predicted IGTVs and the ground truth, with a mean DSC of 0.882 ± 0.085 and an HD95 of 4.88 ± 2.84 mm. The best GTV results were generally observed at the end-inspiration stage. CONCLUSIONS: Our proposed DL framework for tumor segmentation on 4D-CT datasets shows promise for fully automated delineation in the future. The promising results of this work provide impetus for its integration into the 4DCT treatment planning workflow to improve hepatocellular carcinoma radiotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。