Learning a variational network for reconstruction of accelerated MRI data.

阅读:4
作者:Hammernik Kerstin, Klatzer Teresa, Kobler Erich, Recht Michael P, Sodickson Daniel K, Pock Thomas, Knoll Florian
PURPOSE: To allow fast and high-quality reconstruction of clinical accelerated multi-coil MR data by learning a variational network that combines the mathematical structure of variational models with deep learning. THEORY AND METHODS: Generalized compressed sensing reconstruction formulated as a variational model is embedded in an unrolled gradient descent scheme. All parameters of this formulation, including the prior model defined by filter kernels and activation functions as well as the data term weights, are learned during an offline training procedure. The learned model can then be applied online to previously unseen data. RESULTS: The variational network approach is evaluated on a clinical knee imaging protocol for different acceleration factors and sampling patterns using retrospectively and prospectively undersampled data. The variational network reconstructions outperform standard reconstruction algorithms, verified by quantitative error measures and a clinical reader study for regular sampling and acceleration factor 4. CONCLUSION: Variational network reconstructions preserve the natural appearance of MR images as well as pathologies that were not included in the training data set. Due to its high computational performance, that is, reconstruction time of 193 ms on a single graphics card, and the omission of parameter tuning once the network is trained, this new approach to image reconstruction can easily be integrated into clinical workflow. Magn Reson Med 79:3055-3071, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。