Although radiomics research has experienced rapid growth in recent years, with numerous studies dedicated to the automated extraction of diagnostic and prognostic information from various imaging modalities, such as CT, PET, and MRI, only a small fraction of these findings has successfully transitioned into clinical practice. This gap is primarily due to the significant methodological challenges involved in radiomics research, which emphasize the need for a rigorous evaluation of study quality. While many technical aspects may lie outside the expertise of most radiologists, having a foundational knowledge is essential for evaluating the quality of radiomics workflows and contributing, together with data scientists, to the development of models with a real-world clinical impact. This review is designed for the new generation of radiologists, who may not have specialized training in machine learning or radiomics, but will inevitably play a role in this evolving field. The paper has two primary objectives: first, to provide a clear, systematic guide to radiomics study pipeline, including study design, image preprocessing, feature selection, model training and validation, and performance evaluation. Furthermore, given the critical importance of evaluating the robustness of radiomics studies, this review offers a step-by-step guide to the application of the METhodological RadiomICs Score (METRICS, 2024)-a newly proposed tool for assessing the quality of radiomics studies. This roadmap aims to support researchers and reviewers alike, regardless of their machine learning expertise, in utilizing this tool for effective study evaluation.
Decoding Radiomics: A Step-by-Step Guide to Machine Learning Workflow in Hand-Crafted and Deep Learning Radiomics Studies.
阅读:3
作者:Cè Maurizio, Chiriac Marius Dumitru, Cozzi Andrea, Macrì Laura, Rabaiotti Francesca Lucrezia, Irmici Giovanni, Fazzini Deborah, Carrafiello Gianpaolo, Cellina Michaela
| 期刊: | Diagnostics | 影响因子: | 3.300 |
| 时间: | 2024 | 起止号: | 2024 Nov 5; 14(22):2473 |
| doi: | 10.3390/diagnostics14222473 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
