Assays for chemical biomarkers are a vital component in the ecosystem of noninvasive disease state assessment, many of which rely on quantification by colorimetric reactions or spectrophotometry. While modern advances in microfluidic technology have enabled such classes of devices to be employed in medical applications, the challenge has persisted in adapting the necessary tooling and equipment to integrate spectrophotometry into a microfluidic workflow. Spectrophotometric measurements are common in biomarker assays because of straightforward acquisition, ease of developing the assay's mechanism of action, and ease of tuning sensitivity. In this work, 3D-printed, discrete microfluidic elements are leveraged to develop a model system for assaying hyaluronidase, a urinary biomarker of bladder cancer, via absorbance spectrometry of gold nanoparticle aggregation. Compared to laboratory microtiter plate-based techniques, the system demonstrates equivalent performance while remaining competitive in terms of resource and operation requirements and cost.
Spectrophotometry in modular microfluidic architectures.
阅读:5
作者:Thompson Bryant, Bhargava Krisna C, Czaja Alexander T, Pan Bin, Samuelsen Brian T, Malmstadt Noah
| 期刊: | Biomicrofluidics | 影响因子: | 2.400 |
| 时间: | 2019 | 起止号: | 2019 Dec 4; 13(6):064121 |
| doi: | 10.1063/1.5124303 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
