PURPOSE: A novel, mobile cone-beam computed tomography (CBCT) system for image-guided adaptive brachytherapy was recently deployed at our hospital as worldwide first site. Prior to the device's clinical operation, a profound characterization of its imaging performance was conducted. This was essential to optimize both the imaging workflow and image quality for achieving the best possible clinical outcomes. We present the results of our investigations. METHODS: The novel CBCT-system features a ring gantry with 121Â cm clearance as well as a 43.2Â ÃÂ 43.2Â cm(2) flat-panel detector, and is controlled via a tablet-personal computer (PC). For evaluating its imaging performance, the geometric reproducibility as well as imaging fidelity, computed tomography (CT)-number accuracy, uniformity, contrast-noise-ratio (CNR), noise characteristics, and spatial resolution as fundamental image quality parameters were assessed. As dose metric the weighted cone-beam dose index (CBDI(w) ) was measured. Image quality was evaluated using standard quality assurance (QA) as well as anthropomorphic upper torso and breast phantoms. Both in-house and manufacturer protocols for abdomen, pelvis, and breast imaging were examined. RESULTS: Using the in-house protocols, the QA phantom scans showed altogether a high image quality, with high CT-number accuracy (R(2Â ) >Â 0.97) and uniformity (<12 Hounsfield Unit (HU) cupping), reasonable noise and imaging fidelity, and good CNR at bone-tissue transitions of up to 28:1. Spatial resolution was strongly limited by geometric instabilities of the device. The breast phantom scans fulfilled clinical requirements, whereas the abdomen and pelvis scans showed severe artifacts, particularly at air/bone-tissue transitions. CONCLUSION: With the novel CBCT-system, achieving a high image quality appears possible in principle. However, adaptations of the standard protocols, performance enhancements in image reconstruction referring to artifact reductions, as well as the extinction of geometric instabilities are imperative.
Technical evaluation of the cone-beam computed tomography imaging performance of a novel, mobile, gantry-based X-ray system for brachytherapy.
阅读:4
作者:Karius Andre, Karolczak Marek, Strnad Vratislav, Bert Christoph
| 期刊: | Journal of Applied Clinical Medical Physics | 影响因子: | 2.200 |
| 时间: | 2022 | 起止号: | 2022 Feb;23(2):e13501 |
| doi: | 10.1002/acm2.13501 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
