Exposome-Scale Investigation of Cl-/Br-Containing Chemicals Using High-Resolution Mass Spectrometry, Multistage Machine Learning, and Cloud Computing.

阅读:25
作者:Zhao Tingting, Low Brian, Shen Qiming, Wang Yukai, Hidalgo Delgado David, Chau K N Minh, Pang Zhiqiang, Li Xiaoxiao, Xia Jianguo, Li Xing-Fang, Huan Tao
Over 70% of organic halogens, representing chlorine- and bromine-containing disinfection byproducts (Cl-/Br-DBPs), remain unidentified after 50 years of research. This work introduces a streamlined and cloud-based exposomics workflow that integrates high-resolution mass spectrometry (HRMS) analysis, multistage machine learning, and cloud computing for efficient analysis and characterization of Cl-/Br-DBPs. In particular, the multistage machine learning structure employs progressively different heavy isotopic peaks at each layer and capture the distinct isotopic characteristics of nonhalogenated compounds and Cl-/Br-compounds at different halogenation levels. This innovative approach enables the recognition of 22 types of Cl-/Br-compounds with up to 6 Br and 8 Cl atoms. To address the data imbalance among different classes, particularly the limited number of heavily chlorinated and brominated compounds, data perturbation is performed to generate hypothetical/synthetic molecular formulas containing multiple Cl and Br atoms, facilitating data augmentation. To further benefit the environmental chemistry community with limited computational experience and hardware access, above innovations are incorporated into HalogenFinder (http://www.halogenfinder.com/), a user-friendly, web-based platform for Cl-/Br-compound characterization, with statistical analysis support via MetaboAnalyst. In the benchmarking, HalogenFinder outperformed two established tools, achieving a higher recognition rate for 277 authentic Cl-/Br-compounds and uniquely identifying the number of Cl/Br atoms. In laboratory tests of DBP mixtures, it identified 72 Cl-/Br-DBPs with proposed structures, of which eight were confirmed with chemical standards. A retrospective analysis of 2022 finished water HRMS data revealed insightful temporal trends in Cl-DBP features. These results demonstrate HalogenFinder's effectiveness in advancing Cl-/Br-compound identification for environmental science and exposomics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。