Exposome-Scale Investigation of Cl-/Br-Containing Chemicals Using High-Resolution Mass Spectrometry, Multistage Machine Learning, and Cloud Computing.

阅读:10
作者:Zhao Tingting, Low Brian, Shen Qiming, Wang Yukai, Hidalgo Delgado David, Chau K N Minh, Pang Zhiqiang, Li Xiaoxiao, Xia Jianguo, Li Xing-Fang, Huan Tao
Over 70% of organic halogens, representing chlorine- and bromine-containing disinfection byproducts (Cl-/Br-DBPs), remain unidentified after 50 years of research. This work introduces a streamlined and cloud-based exposomics workflow that integrates high-resolution mass spectrometry (HRMS) analysis, multistage machine learning, and cloud computing for efficient analysis and characterization of Cl-/Br-DBPs. In particular, the multistage machine learning structure employs progressively different heavy isotopic peaks at each layer and capture the distinct isotopic characteristics of nonhalogenated compounds and Cl-/Br-compounds at different halogenation levels. This innovative approach enables the recognition of 22 types of Cl-/Br-compounds with up to 6 Br and 8 Cl atoms. To address the data imbalance among different classes, particularly the limited number of heavily chlorinated and brominated compounds, data perturbation is performed to generate hypothetical/synthetic molecular formulas containing multiple Cl and Br atoms, facilitating data augmentation. To further benefit the environmental chemistry community with limited computational experience and hardware access, above innovations are incorporated into HalogenFinder (http://www.halogenfinder.com/), a user-friendly, web-based platform for Cl-/Br-compound characterization, with statistical analysis support via MetaboAnalyst. In the benchmarking, HalogenFinder outperformed two established tools, achieving a higher recognition rate for 277 authentic Cl-/Br-compounds and uniquely identifying the number of Cl/Br atoms. In laboratory tests of DBP mixtures, it identified 72 Cl-/Br-DBPs with proposed structures, of which eight were confirmed with chemical standards. A retrospective analysis of 2022 finished water HRMS data revealed insightful temporal trends in Cl-DBP features. These results demonstrate HalogenFinder's effectiveness in advancing Cl-/Br-compound identification for environmental science and exposomics.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。