Cell metrics such as area, length, and width provide informative data about cell cycle dynamics. Factors that affect these dimensions include environmental conditions and genotypic differences. Fission yeast ( Schizosaccharomyces pombe ) is a rod-shaped ascomycete fungus in which cell cycle progression is linked to changes in cell length. Microscopy work to obtain these metrics places considerable burdens on time and effort. We now report on Photo Phenosizer (PP), a machine learning-based methodology that measures cell dimensions in fission yeast. It does this in an unbiased, automated manner and streamlines workflow from image acquisition to statistical analysis. Using this new approach, we constructed an efficient and flexible pipeline for experiments involving different growth media (YES and EMM) and treatments (Untreated and MMS) as well as different genotypes ( cut6-621 versus wildtype). This methodology allows for the analysis of larger sample sizes and faster image processing relative to manual segmentation. Our findings suggest that researchers using PP can quickly and efficiently determine cell size differences under various conditions that highlight genetic or environmental disruptions.
Photo Phenosizer, a rapid machine learning-based method to measure cell dimensions in fission yeast.
阅读:4
作者:Vo Martin, Kuo-Esser Lance, Dominguez Mauricio, Barta Hayley, Graber Meghan, Rausenberger Alex, Miller Ryan, Sommer Nathan, Escorcia Wilber
| 期刊: | microPublication Biology | 影响因子: | 0.000 |
| 时间: | 2022 | 起止号: | 2022 Aug 4; 2022:10 |
| doi: | 10.17912/micropub.biology.000620 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
