Current breast tumor margin detection methods are destructive, time-consuming, and result in significant reoperative rates. Dual-modality photoacoustic tomography (PAT) and ultrasound has the potential to enhance breast margin characterization by providing clinically relevant compositional information with high sensitivity and tissue penetration. However, quantitative methods that rigorously compare volumetric PAT and ultrasound images with gold-standard histology are lacking, thus limiting clinical validation and translation. Here, we present a quantitative multimodality workflow that uses inverted Selective Plane Illumination Microscopy (iSPIM) to facilitate image co-registration between volumetric PAT-ultrasound datasets with histology in human invasive ductal carcinoma breast tissue samples. Our ultrasound-PAT system consisted of a tunable Nd:YAG laser coupled with a 40Â MHz central frequency ultrasound transducer. A linear stepper motor was used to acquire volumetric PAT and ultrasound breast biopsy datasets using 1100Â nm light to identify hemoglobin-rich regions and 1210Â nm light to identify lipid-rich regions. Our iSPIM system used 488Â nm and 647Â nm laser excitation combined with Eosin and DRAQ5, a cell-permeant nucleic acid binding dye, to produce high-resolution volumetric datasets comparable to histology. Image thresholding was applied to PAT and iSPIM images to extract, quantify, and topologically visualize breast biopsy lipid, stroma, hemoglobin, and nuclei distribution. Our lipid-weighted PAT and iSPIM images suggest that low lipid regions strongly correlate with malignant breast tissue. Hemoglobin-weighted PAT images, however, correlated poorly with cancerous regions determined by histology and interpreted by a board-certified pathologist. Nuclei-weighted iSPIM images revealed similar cellular content in cancerous and non-cancerous tissues, suggesting malignant cell migration from the breast ducts to the surrounding tissues. We demonstrate the utility of our nondestructive, volumetric, region-based quantitative method for comprehensive validation of 3D tomographic imaging methods suitable for bedside tumor margin detection.
Assessment of photoacoustic tomography contrast for breast tissue imaging using 3D correlative virtual histology.
阅读:4
作者:Sangha Gurneet S, Hu Bihe, Li Guang, Fox Sharon E, Sholl Andrew B, Brown J Quincy, Goergen Craig J
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2022 | 起止号: | 2022 Feb 15; 12(1):2532 |
| doi: | 10.1038/s41598-022-06501-3 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
