Identification of metabolites from liquid chromatography-coulometric array detection profiling: gas chromatography-mass spectrometry and refractionation provide essential information orthogonal to LC-MS/microNMR.

阅读:10
作者:Gathungu Rose M, Bird Susan S, Sheldon Diane P, Kautz Roger, Vouros Paul, Matson Wayne R, Kristal Bruce S
Liquid chromatography-coulometric array detection (LC-EC) is a sensitive, quantitative, and robust metabolomics profiling tool that complements the commonly used mass spectrometry (MS) and nuclear magnetic resonance (NMR)-based approaches. However, LC-EC provides little structural information. We recently demonstrated a workflow for the structural characterization of metabolites detected by LC-EC profiling combined with LC-electrospray ionization (ESI)-MS and microNMR. This methodology is now extended to include (i) gas chromatography (GC)-electron ionization (EI)-MS analysis to fill structural gaps left by LC-ESI-MS and NMR and (ii) secondary fractionation of LC-collected fractions containing multiple coeluting analytes. GC-EI-MS spectra have more informative fragment ions that are reproducible for database searches. Secondary fractionation provides enhanced metabolite characterization by reducing spectral overlap in NMR and ion suppression in LC-ESI-MS. The need for these additional methods in the analysis of the broad chemical classes and concentration ranges found in plasma is illustrated with discussion of four specific examples: (i) characterization of compounds for which one or more of the detectors is insensitive (e.g., positional isomers in LC-MS, the direct detection of carboxylic groups and sulfonic groups in (1)H NMR, or nonvolatile species in GC-MS), (ii) detection of labile compounds, (iii) resolution of closely eluting and/or coeluting compounds, and (iv) the capability to harness structural similarities common in many biologically related, LC-EC-detectable compounds.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。