Diagnostic Fragmentation Pathways for Identification of Phthalate Metabolites in Nontargeted Analysis Studies.

阅读:8
作者:Feng Yong-Lai, Singh Randolph, Chao Alex, Li Yan
Phthalates have been studied due to their linkages with adverse developmental effects; however, metabolites of this class of compounds are undercharacterized and are poorly captured by traditional targeted analysis. In this study, we developed a nontargeted analysis approach for identifying and classifying phthalate metabolites based on a comprehensive study of their fragmentation pathways in electrospray ionization (ESI) quadrupole-time-of-flight mass spectrometry (QTOF-MS). This approach identifies molecular features in the data as phthalate metabolites via the detection of three structurally significant fragment ions. Then phthalate metabolites are classified into four types based on the presence of additional fragment ions specific to each type. Cleavage mechanisms for each class of phthalate metabolite are proposed based on fragmentation patterns generated at various collision energies (CE). All of the tested phthalate metabolites including oxidative and nonoxidative metabolites produced a fragment ion at m/z 121.0295, representing the deprotonated benzoate ion [C(6)H(5)COO](-). Most tested phthalate metabolites can produce a specific ion at m/z 147.0088, the deprotonated o-phthalic anhydride ion. However, phthalate carboxylate metabolites can only produce the [M-H-R](-) ion at m/z 165.0193 and do not produce the fragment at m/z 147.0088. Other phthalate oxidative metabolites (hydroxyl- and oxo-) follow a different fragmentation pathway than nonoxidative metabolites. With this workflow, eight unknown phthalate metabolites were putatively identified in pooled urine, with one identified as a previously unreported metabolite by a combination of the MS/MS spectrum and the predicted retention time. Method detection limits for phthalate metabolites in urine were also estimated.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。