Wearable Internet of Things (WIoT) and Artificial Intelligence (AI) are rapidly emerging technologies for healthcare. These technologies enable seamless data collection and precise analysis toward fast, resource-abundant, and personalized patient care. However, conventional machine learning workflow requires data to be transferred to the remote cloud server, which leads to significant privacy concerns. To tackle this problem, researchers have proposed federated learning, where end-point users collaboratively learn a shared model without sharing local data. However, data heterogeneity, i.e., variations in data distributions within a client (intra-client) or across clients (inter-client), degrades the performance of federated learning. Existing state-of-the-art methods mainly consider inter-client data heterogeneity, whereas intra-client variations have not received much attention. To address intra-client variations in federated learning, we propose a federated clustered multi-domain learning algorithm based on ClusterGAN, multi-domain learning, and graph neural networks. We applied the proposed algorithm to a case study on stress-level prediction, and our proposed algorithm outperforms two state-of-the-art methods by 4.4% in accuracy and 0.06 in the F1 score. In addition, we demonstrate the effectiveness of the proposed algorithm by investigating variants of its different modules.
Federated clustered multi-domain learning for health monitoring.
阅读:3
作者:Jiang Shiyi, Li Yuan, Firouzi Farshad, Chakrabarty Krishnendu
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2024 | 起止号: | 2024 Jan 9; 14(1):903 |
| doi: | 10.1038/s41598-024-51344-9 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
