Mass spectrometry assessment of ubiquitin carboxyl-terminal hydrolase L1 partitioning between soluble and particulate brain homogenate fractions.

阅读:2
作者:Chen Junjun, Huang Richard Y-C, Turko Illarion V
Partitioning of specific proteins between soluble and insoluble forms because of aggregation, membrane attachment, and (or) association with senile plaques and neurofibrillary tangles is a major feature of several neurodegenerative disorders, including Alzheimer's disease (AD). Ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) is an example of a neuron-specific protein which displays two different dimerization-dependent catalytic activities and can be farnesylated for membrane attachment, oxidized, and truncated. Decreased levels of soluble UCH-L1 are inversely proportional to the number of neurofibrillary tangles. Further assessment of a link between UCH-L1 function and the pathogenesis of AD requires an analytical method to separately quantify different UCH-L1 forms. In the present study, we have developed a multiple reaction monitoring (MRM) assay to measure UCH-L1 in the high-speed supernatant and pellet of frontal cortex homogenate. The well-characterized (15)N-labeled quantification concatamer (QconCAT) carrying prototypic tryptic peptides of UCH-L1 was used as an internal standard. The composed protocol of frontal cortex processing includes solubilization and reduction/alkylation of proteins in the presence of 1% sodium dodecyl sulfate (SDS) and following with desalting/delipidation of the sample by chloroform/methanol precipitation with extra water washing of the protein pellet. The measurements were performed for frontal cortex samples from control and severe AD donors. The proposed workflow can be recommended for quantification of partitioning of other proteins of interest.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。