Immunotherapy is used to treat almost all patients with advanced non-small cell lung cancer (NSCLC); however, identifying robust predictive biomarkers remains challenging. Here we show the predictive capacity of integrating medical imaging, histopathologic and genomic features to predict immunotherapy response using a cohort of 247 patients with advanced NSCLC with multimodal baseline data obtained during diagnostic clinical workup, including computed tomography scan images, digitized programmed death ligand-1 immunohistochemistry slides and known outcomes to immunotherapy. Using domain expert annotations, we developed a computational workflow to extract patient-level features and used a machine-learning approach to integrate multimodal features into a risk prediction model. Our multimodal model (area under the curve (AUC)â=â0.80, 95% confidence interval (CI) 0.74-0.86) outperformed unimodal measures, including tumor mutational burden (AUCâ=â0.61, 95% CI 0.52-0.70) and programmed death ligand-1 immunohistochemistry score (AUCâ=â0.73, 95% CI 0.65-0.81). Our study therefore provides a quantitative rationale for using multimodal features to improve prediction of immunotherapy response in patients with NSCLC using expert-guided machine learning.
Multimodal integration of radiology, pathology and genomics for prediction of response to PD-(L)1 blockade in patients with non-small cell lung cancer.
阅读:6
作者:Vanguri Rami S, Luo Jia, Aukerman Andrew T, Egger Jacklynn V, Fong Christopher J, Horvat Natally, Pagano Andrew, Araujo-Filho Jose de Arimateia Batista, Geneslaw Luke, Rizvi Hira, Sosa Ramon, Boehm Kevin M, Yang Soo-Ryum, Bodd Francis M, Ventura Katia, Hollmann Travis J, Ginsberg Michelle S, Gao Jianjiong, Hellmann Matthew D, Sauter Jennifer L, Shah Sohrab P
| 期刊: | Nature Cancer | 影响因子: | 28.500 |
| 时间: | 2022 | 起止号: | 2022 Oct;3(10):1151-1164 |
| doi: | 10.1038/s43018-022-00416-8 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
