Correlating mechanical and gene expression data on the single cell level to investigate metastatic phenotypes.

阅读:10
作者:Young Katherine M, Xu Congmin, Ahkee Kelly, Mezencev Roman, Swingle Steven P, Yu Tong, Paikeday Ava, Kim Cathy, McDonald John F, Qiu Peng, Sulchek Todd
Stiffness has been observed to decrease for many cancer cell types as their metastatic potential increases. Although cell mechanics and metastatic potential are related, the underlying molecular factors associated with these phenotypes remain unknown. Therefore, we have developed a workflow to measure the mechanical properties and gene expression of single cells that is used to generate large linked-datasets. The process combines atomic force microscopy to measure the mechanics of individual cells with multiplexed RT-qPCR gene expression analysis on the same single cells. Surprisingly, the genes that most strongly correlated with mechanical properties were not cytoskeletal, but rather were markers of extracellular matrix remodeling, epithelial-to-mesenchymal transition, cell adhesion, and cancer stemness. In addition, dimensionality reduction analysis showed that cell clustering was improved by combining mechanical and gene expression data types. The single cell genomechanics method demonstrates how single cell studies can identify molecular drivers that could affect the biophysical processes underpinning metastasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。