Glottis segmentation is a crucial step to quantify endoscopic footage in laryngeal high-speed videoendoscopy. Recent advances in deep neural networks for glottis segmentation allow for a fully automatic workflow. However, exact knowledge of integral parts of these deep segmentation networks remains unknown, and understanding the inner workings is crucial for acceptance in clinical practice. Here, we show that a single latent channel as a bottleneck layer is sufficient for glottal area segmentation using systematic ablations. We further demonstrate that the latent space is an abstraction of the glottal area segmentation relying on three spatially defined pixel subtypes allowing for a transparent interpretation. We further provide evidence that the latent space is highly correlated with the glottal area waveform, can be encoded with four bits, and decoded using lean decoders while maintaining a high reconstruction accuracy. Our findings suggest that glottis segmentation is a task that can be highly optimized to gain very efficient and explainable deep neural networks, important for application in the clinic. In the future, we believe that online deep learning-assisted monitoring is a game-changer in laryngeal examinations.
A single latent channel is sufficient for biomedical glottis segmentation.
阅读:4
作者:Kist Andreas M, Breininger Katharina, Dörrich Marion, Dürr Stephan, Schützenberger Anne, Semmler Marion
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2022 | 起止号: | 2022 Aug 22; 12(1):14292 |
| doi: | 10.1038/s41598-022-17764-1 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
