Chemical engineers heavily rely on precise knowledge of physicochemical properties to model chemical processes. Despite the growing popularity of deep learning, it is only rarely applied for property prediction due to data scarcity and limited accuracy for compounds in industrially-relevant areas of the chemical space. Herein, we present a geometric deep learning framework for predicting gas- and liquid-phase properties based on novel quantum chemical datasets comprising 124,000 molecules. Our findings reveal that the necessity for quantum-chemical information in deep learning models varies significantly depending on the modeled physicochemical property. Specifically, our top-performing geometric model meets the most stringent criteria for "chemically accurate" thermochemistry predictions. We also show that by carefully selecting the appropriate model featurization and evaluating prediction uncertainties, the reliability of the predictions can be strongly enhanced. These insights represent a crucial step towards establishing deep learning as the standard property prediction workflow in both industry and academia.Scientific contributionWe propose a flexible property prediction tool that can handle two-dimensional and three-dimensional molecular information. A thermochemistry prediction methodology that achieves high-level quantum chemistry accuracy for a broad application range is presented. Trained deep learning models and large novel molecular databases of real-world molecules are provided to offer a directly usable and fast property prediction solution to practitioners.
Geometric deep learning for molecular property predictions with chemical accuracy across chemical space.
阅读:5
作者:Dobbelaere Maarten R, Lengyel István, Stevens Christian V, Van Geem Kevin M
| 期刊: | Journal of Cheminformatics | 影响因子: | 5.700 |
| 时间: | 2024 | 起止号: | 2024 Aug 13; 16(1):99 |
| doi: | 10.1186/s13321-024-00895-0 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
