Restricted Dispersal in the Late Successional Forest Tree Species Nothofagus Pumilio: Consequences Under Global Change.

阅读:14
作者:Soliani C, Sekely J, Zamora-Ballesteros C, Heer K, Lepais O, Mondino V, Opgenoorth L, Pastorino M, Marchelli P
Plants rely on gamete dispersal to ensure the inheritance of their genes. Gene flow, mediated by pollen and seed dispersal, also fosters species' cohesion across space, facilitates population migration, and influences local adaptation. Nothofagus pumilio is an ecologically important wind-dispersed tree species of the Patagonian Andes. We aim to uncover its current and historic effective dispersal distances and characterize its fine-scale genetic structure. In a naturally monospecific stand of N. pumilio, we sampled 200 adults and 400 seedlings. Using a modern sequencing approach (SSRseq), we developed 15 nuclear microsatellite markers for genotyping and used them to characterize genetic diversity and fine-scale genetic structure. We estimated dispersal distances using direct methods (i.e., neighborhood models) and indirect (i.e., inferred from fine-scale spatial genetic structure). Short average seed and pollen dispersal distances were estimated (δ(s) = 13.33 m and δ(p) = 24.08 m respectively), but the fat-tailed distribution of dispersal kernels also suggests some immigration and long-distance dispersal events. Indirect estimates (σ (2) (g)  = 21.62) are closely aligned with direct estimates. The majority of seedlings (84%) could be assigned to at least one sampled adult within the plot, and these seedlings were produced by just 43% of sampled adults. Reproductive success was significantly associated with seed donors' diameters at breast height. N. pumilio's distribution expansion capacity may be limited by short seed dispersal distances, especially in the context of global change. Natural and assisted migration actions should be prioritized to mitigate future change effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。