Significance: Fluorescent probes and mass spectrometry are the two most popular and complementary methods to quantify thiols in biological systems. In this review, we focus on the widely used and commercially available methods to detect and quantify thiols in living cells and the general approaches applied in mass spectrometry-based thiol quantification. We hope that this review can serve as a general guide for redox biologists who are interested in thiol species. Sulfur, one of the most important elements in living systems, contributes to every aspect of physiology and pathology. Thiols, including cysteine, homocysteine, glutathione, hydrogen sulfide, and hydropersulfides, are the main players in the redox biology system. Therefore, quantifying these thiol species in biological systems is one of the important steps to understand their roles in biology. Recent Advances: Fluorescent probes and mass spectrometry-based methods have been developed to detect and/or quantify thiols in biological systems. Mass spectrometry-based methods have been the gold standard for metabolite quantification in cells. Fluorescent probes can directly detect or quantify thiol species in living cells with spatial and temporal resolutions. Additionally, organelle-specific fluorescent probes have been widely developed. These two methods are complementary to each other. Critical Issues: Reliable quantification of thiol species using fluorescent probes remains challenging. Future Directions: When developing fluorescent probes, we suggest using both the fluorescent probes and mass spectrometry-based thiol quantification methods to cross-check the results. In addition, we call on chemical biologists to move beyond qualitative probes and focus on probes that can provide quantitative results in live cells. These quantitative measurements based on fluorescent probes should be validated with mass spectrometry-based methods. More importantly, chemical biologists should make their probes accessible to the biology end users. Regarding mass spectrometry-based methods, quantification of the derivatized thiol specifies should fit into the general metabolomics workflow. Antioxid. Redox Signal. 36, 354-365.
Fluorescent Probes and Mass Spectrometry-Based Methods to Quantify Thiols in Biological Systems.
阅读:7
作者:Wang Lingfei, Jin Feng, Jiang Xiqian, Chen Jianwei, Wang Meng C, Wang Jin
| 期刊: | Antioxidants & Redox Signaling | 影响因子: | 6.100 |
| 时间: | 2022 | 起止号: | 2022 Feb;36(4-6):354-365 |
| doi: | 10.1089/ars.2021.0204 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
