Machine Learning Elucidates Design Features of Plasmid Deoxyribonucleic Acid Lipid Nanoparticles for Cell Type-Preferential Transfection.

阅读:11
作者:Cheng Leonardo, Zhu Yining, Ma Jingyao, Aggarwal Ataes, Toh Wu Han, Shin Charles, Sangpachatanaruk Will, Weng Gene, Kumar Ramya, Mao Hai-Quan
To broaden the accessibility of cell and gene therapies, it is essential to develop and optimize nonviral, cell type-preferential gene carriers such as lipid nanoparticles (LNPs). While high-throughput screening (HTS) approaches have proven effective in accelerating LNP discovery, they are often costly, labor-intensive, and do not consistently yield actionable design rules that direct screening efforts toward the most relevant chemical and formulation parameters. In this study, we employed a machine learning (ML) workflow, utilizing well-curated plasmid DNA LNP transfection data sets across six cell types, to extract compositional and chemical insights from HTS studies. Our approach achieved prediction errors averaging between 5 and 10%, depending on the cell type. By applying SHapley Additive exPlanations to our ML models, we uncovered key composition-function relationships that govern cell type-preferential LNP transfection efficiency. Notably, we identified consistent LNP composition parameters that enhance in vitro transfection efficiency across diverse cell types, including a helper lipid molar percentage of charged lipids between 9 and 50% and the inclusion of cationic/zwitterionic helper lipids. Additionally, several parameters were found to modulate cell type-preferentiality, such as the total molar percentage of ionizable and helper lipids, N/P ratio, PEGylated lipid molar percentage of uncharged lipids, and hydrophobicity of the helper lipid. This study leverages HTS of compositionally diverse LNP libraries combined with ML analysis to elucidate the interactions between lipid components in LNP formulations, providing insights that contribute to the design of LNP compositions tailored for cell type-preferential transfection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。