Optimized GMP-grade production of non-viral Sleeping Beauty-generated CARCIK cells for enhanced fitness and clinical scalability.

阅读:21
作者:Pisani Ilaria, Melita Giusi, de Souza Patricia Borges, Galimberti Stefania, Savino Angela Maria, Sarno Jolanda, Landoni Beatrice, Crippa Stefano, Gotti Elisa, Cuofano Carolina, Pedrini Olga, Capelli Chiara, Matera Giada, Belotti Daniela, Cesana Stefania, Cabiati Benedetta, Quaroni Michele, Colombo Valentina, Mazza Massimiliano, Vergani Barbara, Gaimari Anna, Nicolini Fabio, Tazzari Marcella, Bocchini Martine, Serafini Marta, Rambaldi Alessandro, Rambaldi Benedetta, Dastoli Giuseppe, Biondi Andrea, Gaipa Giuseppe, Introna Martino, Golay Josée, Tettamanti Sarah
BACKGROUND: Strict adherence to GMP guidelines and regulatory compliance is crucial when transitioning from research to clinical-grade production of ATMPs like CAR T cells. The success of CAR T cell therapy in treating hematological malignancies highlights the need for closed or automated systems to ensure quality and efficacy. Recent evidence also suggests that ex vivo culture conditions can significantly impact CAR T cell functionality. METHODS: We present our optimized methodology for expanding Sleeping Beauty transposon-engineered Chimeric Antigen Receptor-Cytokine-Induced Killer (CARCIK) cells using G-Rex devices and evaluate its impact on CARCIK cell phenotype and T cell fitness. RESULTS: Building on our previously validated protocol, we introduced key simplifications to optimize the CARCIK differentiation process. Delaying the nucleofection step eliminated the need for feeder cells while maintaining efficient CAR expression and high cell viability. Transitioning from T-flasks to G-Rex bioreactors reduced operator hands-on time from 21 to 28 days to 14-17 days and resulted in a less differentiated CARCIK cell product. Metabolic and transcriptional analyses showed that the novel protocol improves CARCIK cell fitness and in vivo efficacy against B-cell lymphoma. The novel method was validated in Good Manufacturing Practices (GMP) conditions at our two Cell Factories and yielded enough numbers of CARCIK-CD19 cells for clinical use. CONCLUSIONS: Optimizing non-viral CARCIK cell production using G-Rex bioreactors and refined timing adjustments has streamlined the workflow, enhanced cell fitness, and resulted in a highly effective therapeutic product with demonstrated in vivo efficacy in mice. These improvements reduced manipulation and contamination risks, while optimizing logistics and space efficiency, facilitating allogeneic CARCIK generation for a current phase I/II clinical trial (NCT05869279) in patients with R/R CD19 + non-Hodgkin Lymphoma (B-cell NHL) and Chronic Lymphocytic Leukemia (CLL), confirming the approach's scalability and clinical potential.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。