Extracellular vesicles (EVs) present a promising modality for numerous biological and medical applications, including therapeutics. Developing facile methods to engineer EVs is essential to meeting the rapidly expanding demand for various functionalized EVs in these applications. Herein, we developed a technology that integrates enzymatic glycoengineering and microfluidics for effective EV functionalization. This method builds on a 3D nanostructured microfluidic device to streamline a multiple-step EV engineering process, which involves a step of enzymatic reaction to install azido-sialic acid residues to glycans on EVs using a sialyltransferase and an azide-tagged sialyl donor followed by the attachment of various functionalities, such as biotin and fluorescent labels, to the resulting azido-glycans on EVs through a biocompatible click reaction. Compared to traditional EV engineering methods, we show that our technology improves the efficiency of EV glycoengineering while simplifying and expediting the workflow. Furthermore, we demonstrated the applicability of this technology to EVs derived from the cell lines of different cancer types, including A549, PC3, and COLO-1 cells. Overall, this EV engineering technology could provide a potentially useful tool for broad applications.
Efficient Enzymatic Glycan Engineering of Extracellular Vesicles Using Nanomaterial-Interfaced Microfluidics.
阅读:3
作者:Zhou Xin, Jaiswal Mohit, Shi Jingzhu, Guo Jiatong, Kundu Sayan, Guo Zhongwu, Zeng Yong
| 期刊: | ACS Applied Materials & Interfaces | 影响因子: | 8.200 |
| 时间: | 2025 | 起止号: | 2025 Jan 8; 17(1):2689-2700 |
| doi: | 10.1021/acsami.4c20294 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
