Aptamer Development for SARS-CoV-2 and Omicron Variants Using the Spike Protein Receptor Binding Domain as a Potential Diagnostic Tool and Therapeutic Agent.

阅读:6
作者:Shekar Prasanna V, Kumar Anuj, Mulgaonkar Nirmitee, Kashyap Samneet, Choudhir Gourav, Fernando Sandun, Rustgi Sachin
Despite various methods for detecting and treating SARS-CoV-2, affordable and easily applicable solutions are still needed. Aptamers can potentially fill this gap. Here, we establish a workflow to identify aptamers that bind to the spike proteins of SARS-CoV-2, a process applicable to other targets as well. The spike protein is crucial for the virus's entry into host cells. The aptamer development process for the spike protein's receptor binding domain (RBD) begins with splitting the SARS-CoV-2's genome into 40 nucleotide-long sequences, predicting their two-dimensional structure, and sorting based on the free energy. Selected oligomers undergo three-dimensional structure prediction and docking onto the viral spike protein's RBD. Six RNA oligomers were identified as top candidates based on the RNA docking with the SARS-CoV-2 wild-type (WT) (Wuhan-Hu-1 strain) and Omicron variant BA.1 RBD and molecular dynamics simulations. Three oligomers also demonstrated strong predicted binding affinity with other SARS-CoV-2 variants, including BA.2, XBB.1.5, and EG.5, based on the protein-aptamer docking followed by stability evaluation using the MD simulations. The aptamer with the best fit for the spike protein RBD was later validated using biolayer interferometry. The process has resulted in identifying a single aptamer from a library of 29,000 RNA oligomers, which exhibited affinity in the submicromolar range and the potential to develop into a viral screen or therapeutic.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。