Putting error bars on density functional theory.

阅读:5
作者:Yuk Simuck F, Sargin Irmak, Meyer Noah, Krogel Jaron T, Beckman Scott P, Cooper Valentino R
Predicting the error in density functional theory (DFT) calculations due to the choice of exchange-correlation (XC) functional is crucial to the success of DFT, but currently, there are limited options to estimate this a priori. This is particularly important for high-throughput screening of new materials. In this work, the structure and elastic properties of binary and ternary oxides are computed using four XC functionals: LDA, PBE-GGA, PBEsol, and vdW-DF with C09 exchange. To analyze the systemic errors inherent to each XC functional, we employed materials informatics methods to predict the expected errors. The predicted errors were also used to better the DFT-predicted lattice parameters. Our results emphasize the link between the computed errors and the electron density and hybridization errors of a functional. In essence, these results provide "error bars" for choosing a functional for the creation of high-accuracy, high-throughput datasets as well as avenues for the development of XC functionals with enhanced performance, thereby enabling the accelerated discovery and design of new materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。