We propose a Bayesian population modeling and virtual bioequivalence assessment approach to establishing dissolution specifications for oral dosage forms. A generalizable semi-physiologically based pharmacokinetic absorption model with six gut segments and liver, connected to a two-compartment model of systemic disposition for bupropion hydrochloride oral dosage forms was developed. Prior information on model parameters for gut physiology, bupropion physicochemical properties, and drug product properties were obtained from the literature. The release of bupropion hydrochloride from immediate-, sustained- and extended-release oral dosage forms was described by a Weibull function. In vitro dissolution data were used to assign priors to the in vivo release properties of the three bupropion formulations. We applied global sensitivity analysis to identify the influential parameters for plasma bupropion concentrations and calibrated them. To quantify inter- and intra-individual variability, plasma concentration profiles in healthy volunteers that received the three dosage forms, each at two doses, were used. The calibrated model was in good agreement with both in vitro dissolution and in vivo exposure data. Markov Chain Monte Carlo samples from the joint posterior parameter distribution were used to simulate virtual crossover clinical trials for each formulation with distinct drug dissolution profiles. For each trial, an allowable range of dissolution parameters ("safe space") in which bioequivalence can be anticipated was established. These findings can be used to assure consistent product performance throughout the drug product life-cycle and to support manufacturing changes. Our framework provides a comprehensive approach to support decision-making in drug product development.
A Bayesian population physiologically based pharmacokinetic absorption modeling approach to support generic drug development: application to bupropion hydrochloride oral dosage forms.
阅读:5
作者:Hsieh Nan-Hung, Bois Frédéric Y, Tsakalozou Eleftheria, Ni Zhanglin, Yoon Miyoung, Sun Wanjie, Klein Martin, Reisfeld Brad, Chiu Weihsueh A
| 期刊: | Journal of Pharmacokinetics and Pharmacodynamics | 影响因子: | 2.800 |
| 时间: | 2021 | 起止号: | 2021 Dec;48(6):893-908 |
| doi: | 10.1007/s10928-021-09778-5 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
