Massive compression for high data rate macromolecular crystallography (HDRMX): impact on diffraction data and subsequent structural analysis.

阅读:5
作者:Bernstein Herbert J, Soares Alexei S, Horvat Kimberly, Jakoncic Jean
New higher-count-rate, integrating, large-area X-ray detectors with framing rates as high as 17400 images per second are beginning to be available. These will soon be used for specialized macromolecular crystallography experiments but will require optimal lossy compression algorithms to enable systems to keep up with data throughput. Some information may be lost. Can we minimize this loss with acceptable impact on structural information? To explore this question, we have considered several approaches: summing short sequences of images, binning to create the effect of larger pixels, use of JPEG-2000 lossy wavelet-based compression, and use of Hcompress, which is a Haar-wavelet-based lossy compression borrowed from astronomy. We also explore the effect of the combination of summing, binning, and Hcompress or JPEG-2000. In each of these last two methods one can specify approximately how much one wants the result to be compressed from the starting file size. These provide particularly effective lossy compressions that retain essential information for structure solution from Bragg reflections.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。