DNA methylation plays a crucial role in transcriptional regulation. Reduced representation bisulfite sequencing (RRBS) is a technique of increasing use for analyzing genome-wide methylation profiles. Many computational tools such as Metilene, MethylKit, BiSeq and DMRfinder have been developed to use RRBS data for the detection of the differentially methylated regions (DMRs) potentially involved in epigenetic regulations of gene expression. For DMR detection tools, as for countless other medical applications, P-values and their adjustments are among the most standard reporting statistics used to assess the statistical significance of biological findings. However, P-values are coming under increasing criticism relating to their questionable accuracy and relatively high levels of false positive or negative indications. Here, we propose a method to calculate E-values, as likelihood ratios falling into the null hypothesis over the entire parameter space, for DMR detection in RRBS data. We also provide the R package 'metevalue' as a user-friendly interface to implement E-value calculations into various DMR detection tools. To evaluate the performance of E-values, we generated various RRBS benchmarking datasets using our simulator 'RRBSsim' with eight samples in each experimental group. Our comprehensive benchmarking analyses showed that using E-values not only significantly improved accuracy, area under ROC curve and power, over that of P-values or adjusted P-values, but also reduced false discovery rates and type I errors. In applications using real RRBS data of CRL rats and a clinical trial on low-salt diet, the use of E-values detected biologically more relevant DMRs and also improved the negative association between DNA methylation and gene expression.
E-value: a superior alternative to P-value and its adjustments in DNA methylation studies.
阅读:5
作者:Yang Yifan, Liu Haoyuan, Liu Yi, Zhou Liyuan, Zheng Xiaoqi, Yue Rongxian, Mattson David L, Kidambi Srividya, Liang Mingyu, Liu Pengyuan, Pan Xiaoqing
| 期刊: | Briefings in Bioinformatics | 影响因子: | 7.700 |
| 时间: | 2023 | 起止号: | 2023 Jul 20; 24(4):bbad241 |
| doi: | 10.1093/bib/bbad241 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
