The increasing demand for high spatial resolution in remote sensing has underscored the need for super-resolution (SR) algorithms that can upscale low-resolution (LR) images to high-resolution (HR) ones. To address this, we present SEN2NAIP, a novel and extensive dataset explicitly developed to support SR model training. SEN2NAIP comprises two main components. The first is a set of 2,851 LR-HR image pairs, each covering 1.46 square kilometers. These pairs are produced using LR images from Sentinel-2 (S2) and corresponding HR images from the National Agriculture Imagery Program (NAIP). Using this cross-sensor dataset, we developed a degradation model capable of converting NAIP images to match the characteristics of S2 imagery ( S2like ). This led to the creation of a second subset, consisting of 35,314 NAIP images and their corresponding S2like counterparts, generated using the degradation model. With the SEN2NAIP dataset, we aim to provide a valuable resource that facilitates the exploration of new techniques for enhancing the spatial resolution of Sentinel-2 imagery.
SEN2NAIP: A large-scale dataset for Sentinel-2 Image Super-Resolution.
阅读:4
作者:Aybar Cesar, Montero David, Contreras Julio, Donike Simon, Kalaitzis Freddie, Gómez-Chova Luis
| 期刊: | Scientific Data | 影响因子: | 6.900 |
| 时间: | 2024 | 起止号: | 2024 Dec 18; 11(1):1389 |
| doi: | 10.1038/s41597-024-04214-y | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
