Improving Force Field Accuracy by Training against Condensed-Phase Mixture Properties.

阅读:4
作者:Boothroyd Simon, Madin Owen C, Mobley David L, Wang Lee-Ping, Chodera John D, Shirts Michael R
Developing a sufficiently accurate classical force field representation of molecules is key to realizing the full potential of molecular simulations as a route to gaining a fundamental insight into a broad spectrum of chemical and biological phenomena. This is only possible, however, if the many complex interactions between molecules of different species in the system are accurately captured by the model. Historically, the intermolecular van der Waals (vdW) interactions have primarily been trained against densities and enthalpies of vaporization of pure (single-component) systems, with occasional usage of hydration free energies. In this study, we demonstrate how including physical property data of binary mixtures can better inform these parameters, encoding more information about the underlying physics of the system in complex chemical mixtures. To demonstrate this, we retrain a select number of Lennard-Jones parameters describing the vdW interactions of the OpenFF 1.0.0 (Parsley) fixed charge force field against training sets composed of densities and enthalpies of mixing for binary liquid mixtures as well as densities and enthalpies of vaporization of pure liquid systems and assess the performance of each of these combinations. We show that retraining against the mixture data improves the force field's ability to reproduce mixture properties, including solvation free energies, correcting some systematic errors that exist when training vdW interactions against properties of pure systems only.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。