Identifying the population at risk of rapid progression from hormone-sensitive prostate cancer (HSPC) to lethal castration-resistant prostate cancer (CRPC) is a challenge. This work has highlighted important prognostic insights based on proteomics data, magnetic resonance imaging (MRI) and histopathological specimens. We retrospectively developed a multi-omics-based model based on 77 patients with HSPC. In order to identify the features related to survival time under each mode, we used the Boruta algorithm for feature screening. In order to demonstrate the effectiveness of our selected features, we used six machine learning methods to validate the classification of the selected features for each mode. A total of 63 proteome signatures, 60 HE signatures, 56 T2WI signatures, and 54 ADC signatures were identified as features related to the speed of HSPC progression. Ultimately, 30 multi-omics-based features were determined by the least absolute shrinkage and selection operator (LASSO) method and multivariate cox regression. In order to stratify patients with significant disparities in progress, a nomogram model was developed, of which the C-index was 0.906. Accordingly, the developed model could help identify patients who are at a high risk of rapid CRPC progression, and aid clinicians in guiding personalized clinical management and decision-making.
Integrating multimodal data to predict the progression of hormone-sensitive prostate cancer.
阅读:16
作者:Lu Xiangfu, Pan Chenxi, Yao Luhan, Wan Jiayu, Xu Xiaolong, Wang Wei, Wang Xiangying, Liu Xiaoyun, Jin Zhonghua, Wang Hongyu, He Yi, Yang Bo
| 期刊: | Clinical Proteomics | 影响因子: | 3.300 |
| 时间: | 2025 | 起止号: | 2025 May 29; 22(1):21 |
| doi: | 10.1186/s12014-025-09543-7 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
