Radiomics models using machine learning algorithms to differentiate the primary focus of brain metastasis.

阅读:17
作者:Xie Yuping, Li Xuanzi, Yang Shuai, Jia Fujie, Han Yuanyuan, Huang Mingsheng, Chen Lei, Zou Wei, Deng Chuntao, Liang Zibin
BACKGROUND: Brain metastases are common brain tumors in adults. Brain metastases from different primary tumors have special magnetic resonance imaging (MRI) features. As a new technology that can extract and quantify medical image data, and with the rapid development of artificial intelligence, the machine learning model based on radiology has been successfully applied to the diagnosis and differentiation of tumors. This study aimed to develop radiomics models from post-contrast T1-weighted images using machine learning algorithms to differentiate lung cancer from breast cancer brain metastases. METHODS: A retrospective analysis was conducted on 118 lung cancer brain metastases patients and 62 breast cancer brain metastases patients confirmed by surgery pathology or combined clinical and imaging diagnosis at The Fifth Affiliated Hospital of Sun Yat-sen University from August 2015 to September 2023. Patients were randomly divided into a training set (126 cases) and a validation set (54 cases) at a 7:3 ratio. Enhanced T1-weighted images of all patients were imported into ITK-SNAP software to manually delineate the region of interest (ROI). Radiomic features were extracted based on the ROI and feature selection was performed using the least absolute shrinkage and selection operator. Significant features were used to develop models using logistic regression (LR), support vector machine (SVM), K-nearest neighbors (KNN), multilayer perceptron (MLP), and light gradient boosting machine (LightGBM). The diagnostic performance of the models was assessed using the receiver operating characteristic (ROC) curve. RESULTS: The LightGBM radiomics model exhibited the best diagnostic performance, with an area under the curve (AUC) of 0.875 [95% confidence interval (CI): 0.819-0.931] in the training set and 0.866 (95% CI: 0.740-0.993) in the validation set. CONCLUSIONS: The enhanced MRI radiomics model, especially the LightGBM model, can accurately predict the primary lesion types of brain metastases from lung cancer and breast cancer origins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。