This study involves quantum simulations of the dissociation of the ground-state triplet and first excited singlet states of the CH(2) molecule (methylene), which are relevant for interstellar and combustion chemistry. These were modeled as (6e, 23o) systems using 52 qubits on a quantum processor by applying the sample-based quantum diagonalization (SQD) method within a quantum-centric supercomputing framework. We evaluated the ability of SQD to provide accurate results of the singlet-triplet gap in comparison to selected configuration interaction (SCI) calculations and experimental values. To our knowledge, this is the first study of an open-shell system (the CH(2) triplet) using SQD. To obtain accurate energy values, we implemented post-SQD orbital optimization and employed a warm-start approach using previously converged states. The results for the singlet state dissociation were highly accurate, differing by only a few milli-Hartrees from the SCI reference values. Similarly, the SQD-calculated singlet-triplet energy gap aligned well with both experimental and SCI values, underscoring the method's capability to capture key features of CH(2) chemistry. However, the triplet state exhibited greater variability, likely due to differences in bit-string handling within the SQD method for open- versus closed-shell systems and the inherently complex wavefunction character of the triplet state. These findings highlight the strengths and limitations of SQD for modeling open-shell systems while laying a foundation for its application in large-scale electronic structure studies using quantum algorithms.
Quantum-Centric Computational Study of Methylene Singlet and Triplet States.
阅读:7
作者:Liepuoniute Ieva, Doney Kirstin D, Robledo Moreno Javier, Job Joshua A, Friend William S, Jones Gavin O
| 期刊: | Journal of Chemical Theory and Computation | 影响因子: | 5.500 |
| 时间: | 2025 | 起止号: | 2025 May 27; 21(10):5062-5070 |
| doi: | 10.1021/acs.jctc.5c00075 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
