Autism spectrum disorder (ASD) is a neurologic disorder considered to cause discrepancies in physical activities, social skills, and cognition. There is no specific medicine for treating this disorder; early intervention is critical to improving brain function. Additionally, the lack of a clinical test for detecting ASD makes diagnosis challenging. To regulate identification, physicians entertain the children's activities and growing histories. The human face is employed as a biological signature as it has the potential reflections of the brain. It is utilized as a simpler and more helpful tool for early detection. Artificial intelligence (AI) algorithms in medicinal rehabilitation and diagnosis can help specialists identify various illnesses more successfully. However, owing to its particular heterogeneous symptoms and complex nature, diagnosis of ASD remains to be challenging for investigators. This work presents a Fusion of Transfer Learning (TL) with the Dandelion Algorithm for Accurate Autism Spectrum Disorder Detection and Classification (FTLDA-AASDDC) method. The FTLDA-AASDDC technique detects and classifies autism and non-autism samples using facial images. To accomplish this, the FTLDA-AASDDC technique utilizes a bilateral filter (BF) approach for noise elimination. Next, the FTLDA-AASDDC technique employs a fusion-based TL process comprising three models, namely MobileNetV2, DenseNet201, and ResNet50. Moreover, the attention-based bi-directional long short-term memory (A-BiLSTM) method is used to classify and recognize ASD. Finally, the Dandelion Algorithm (DA) is employed to optimize the parameter tuning process, improving the efficacy of the A-BiLSTM technique. A wide range of simulation analyses is performed to highlight the ASD classification performance of the FTLDA-AASDDC technique. The experimental validation of the FTLDA-AASDDC technique portrayed a superior accuracy value of 97.50% over existing techniques.
Fusion of transfer learning with nature-inspired dandelion algorithm for autism spectrum disorder detection and classification using facial features.
阅读:3
作者:Elangovan G, Kumar N Jagadish, Shobana J, Ramprasath M, Joshi Gyanendra Prasad, Cho Woong
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2024 | 起止号: | 2024 Dec 28; 14(1):31104 |
| doi: | 10.1038/s41598-024-82299-6 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
