Electrodermal activity (EDA) recordings are widely used in experimental psychology to measure skin conductance responses (SCRs) that reflect sympathetic nervous system arousal. However, irregular respiration patterns and deep breaths can cause EDA fluctuations that are difficult to distinguish from genuine arousal-related SCRs, presenting a methodological challenge that increases the likelihood of false positives in SCR analyses. Thus, it is crucial to identify respiration-related artifacts in EDA data. Here we developed a novel and freely distributed MATLAB toolbox, Breathe Easy EDA (BEEDA). BEEDA is a flexible toolbox that facilitates EDA visual inspection, allowing users to identify and eliminate respiration artifacts. BEEDA further includes functionality for EDA data analyses (measuring tonic and phasic EDA components) and reliability analyses for artifact identification. The toolbox is suitable for any experiment recording both EDA and respiration data, and flexibly adjusts to experiment-specific parameters (e.g., trial structure and analysis parameters).
Breathe Easy EDA: A MATLAB toolbox for psychophysiology data management, cleaning, and analysis.
阅读:3
作者:Ksander John C, Kark Sarah M, Madan Christopher R
| 期刊: | F1000Research | 影响因子: | 0.000 |
| 时间: | 2018 | 起止号: | 2018 Feb 22; 7:216 |
| doi: | 10.12688/f1000research.13849.2 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
